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Using a method which averages the system of moment equations over the channel 
section, the authors have obtained expressions for Poiseuille flow and thermal 
creep flow in a capillary at intermediate Knudsen numbers (Kn ~ 0.25). 

The analysis of slow gas flow in channels at arbitrary Knudsen number (Kn) is Based, as 
a rule, on numerical or variational methods of solving the linearized kinetic Boltzmann equa- 
tion with model collision integral [1-6]. 

Although the general formulation of the problem using an exact statement of the linear- 
ized Boltzmann collision operator is well known (see, e.g., [2]), correct results have been 
obtained only in the Kn<<l region in computing coefficients of viscous and thermal slip [7, 
8]. 

In [9, I0] the problem of flow of a gas in a planar channel at intermediate Knudsen num- 
ber (Kn~ 0.25) was solved using an exact Boltzmann collision integral, accounting for the 
effect of second-order slip, which corresponds to using the Barnett term in the expansion of 
the distribution function. Here, however, the structure of the Barnett term in [9] was chosen 
on the basis of the simple analogy with its form for the special case of the BGK model. In 
the analysis of [i0] using the 20-moment approximation to the distribution function one can 
write the Barnett term more correctly and thereby improve the dependence of macroscopic flow 
quantities in a channel on the Knudsen number. 

In the present work the method used in [i0] is applied to solve the problem of flow of 
gas in a cylindrical capillary. 

We consider slow flow of a gas in a circular cylindrical channel of radius R under the 
influence of small relative gradients of pressure (k = p~ dp/dz) and temperature (~ = T~: 
dT/dz). One can then seek a solution for the molecular distribution function in the form 

f (v, r, z) = ~o 1 + kz + "~z Ik,~ + ~ (r, , 

fo ~- no'([3/~) 8/2 exp (-- ~vZ), 1~ = m/2kBTo. 

(i) 

Here the subscript 0 corresponds to parameters of the absolute Maxwellian distribution, and 
~(r, ~) is a nonequilibrium addition to the distribution function, determined from the linear- 
ized kinetic Boltzmann equation [ii] 

( -~--)  v2 cgq~ v~v~ 3 ~  
v r -}- vzk q- vzx ~3v2 - -  q- ~~ = L (69). (2 )  

or . r e3v~ r Ov~ 

To solve the problem, as in [i0], we restrict ourselves to a set of moment equations 
which correspond to the 20-moment Grad approximation [12] in going to the continuum limit 
(the flow region close to the wall). 

Multiplying Eq. (2) successively by (c) exp(--cZ), where ~=ci, c ~ c j - - - -  31 c28i~, c~ (c ~ -  52 , 
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1 C2(Ci6~ _~_Cj6m_~Ch~d) and C = ~ / z <  and by c~c~c~-- - ~  and integrating over velocities, we 

arrive at equations of moment type 

l _  O _  r p r z + P o k = O ,  (3) 
r Or 

~/o_ 0 ( 2 
~s '~  + --  U 

I 1 qz+pou~ + m.. ( s .~- - s~ , )=  7 P~' (4) 
r 

[~-~/2 1 0  ( 5 ) 5  4 
- -  - -  r 1-Iz~ 4- 1-I~,,~ 4- I I . =  -- - -  p~ + ~Po . . . .  q~, ( 5 )  

r Or 2 , ~ - -  31 

(5_~/2 1 0 !5 - -  - -  r (4Hz,.,~ - -  [I~r 17z;~z) __ __t0 l]z~r -~ - -  - -  mSzrr, (6) 
r Or r 2[ 

~-~/2 1 0 15 r(4Uzr~r ilz,,, __ yjz~zz) + __I0 flz~r162 = - - - -  mSz~, (7) 
r Or r 2I 

sz~ 4- sz~ + Szzz -- O, (8) 

in which the values of the hydrodynamic velocity uz, the viscous stress tensor Prz, the heat 
flux qz and the moments of third order sij k and fourth order EijkZ are determined by the ex- 
pressions: 
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(1) exp (--  c a) de .  (9) 

Here l=[N]i/p0~ t1~ is the average mean free path, and the viscosity coefficient [~]i corre- 
sponds to the first approximation in the expansion in terms of Sonin polynomials in the Chap- 
man--Enskog method [13]. 

Far from the walls the system of equations (3)-(8) must correspond to the usual 20-mo- 
ment Grad approximation [12]. Following linearization, allowing for the smallness of the , 
quantities Uz, Prz, qz, Sijk, we can write the distribution function in this region in the 
form 

f"(c, r, z ) = f o  l + k z + ~ z  =-- 5 4-c#"(c, r) 
2 

~ a ( c, r) = 2~ l / 2 CzUa -F 2CzCrP o l pra + - ~  qz Cz C 2 -  "2-  -F 2~ l / ~ P~ S~zrr c2r Jr- Sazr C 2~ "4- 31 

(io) 
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Substituting Eq. (i0) into the definition of Eijkl from Eq. 
locities, ~we have 

3 1 
n z r r [  a o a , ~ ,  a ~- - -  p~, I I = ~  p~, H = ~ - -  

2 = - 7  

(9) and integrating over the ve- 

3 (ll) 
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The solution of the system of equations (3)-(8), allowing for Eq. (ii), yields explicit ex- 
pressions for u~, P~z, q~, sa ijh and by substituting these into Eq. (i0) one can obtain an ex- 
pression for the asymptotic correction to the distribution function in the form 

[ k l r r) : 2c~ ~'/~-u~(R)- ~ (R z - r  2) - - k r G G - -  

) {( ) [ ]} 3 ~lc~ (c z 5 3 5 4 5 
- -  - 2 -  - 2 + - ~ -  lkc~ c a - -  " 2 + - 9 -  - - - 2  (c~ + c~) - -  c 2 . (12) 

The last term of this expression is the Barnett correction to the distribution function for 
cylindrical geometry problem considered here. 

The corresponding solution for the planar problem leads to a Barnett correction of the 
type 

2 pr_ tlkG [(c a -  5 ) 4 (5c~ - -d ) ] "  P r =  2 (13) --g- 2 + - - U  " ' 3 

We note that Eq. (13) differs considerably from the form of the analogous correction obtained 
in [i] by the method of elementary solutions for the BGK collision integral model. There- 
fore, the choice in [9] of a Barnett term for an arbitrary molecular interaction law in the 
form Pr -I (c~-- I), where Pr = 2/3 instead of Pr = 1 [i], is incorrect. 

We turn now to the general equations (3)-(8). We note that it follows from the solu- 
tion of Eq. (3) that the relation 

Prz (r) = krpo (14 ) 
2 

is valid in the entire flow region. Substituting this value into Eq. (~), integrating the 
relation obtained with respect to r, and averaging over the channel section, we obtain 

. m , 2 

rnsz,,r(R) -~((sz~>q-<szCv>)n-~-- [q~(R)--<q~>l+Po[U~(R)--<u~>l ~-,/2 kR2po 
8l  ' 

(15) 

R 

2 S where <Q> =-~ 

0 

Q (r) rdr. Also averaging Eqs. (5)-(7) over the channel section, we have 

_ _  5 5 4 ~:/2 
2 [ n ~ , ( ~ ) + n ~ ( R ) + n ~ , = ( R ) l +  ~ kpo+--~-- ~po = - - - -  < qz > (16) 
R 3l ' 

2 [3iizrrr(R ) + 3 I I ~  (R) - -  2II~= (R)] = 15 - Z  - -  2"7- mi~/~" ( < s=, > + < sz~, > ). (17) 

To determine the unknown quantities at the channel wall we use the approximate method of 
Loyalka [7]. We introduce the incident and reflected molecule distribution function such 
that ~ = @+ for Cr > 0 and r = ~- for c r < 0. According to Eq. f12), for the functions ~• 
at r = R, accounting for the usual Maxwelliafi condition of reflection of molecules at the 
Wall,'we have 

cD + (c ~, R)= 2~I/2cza--kRcrcz 32 TIc, (c 2 -  25") + 

-r--f- Ikc~ c2-- 2 + ~  ( ; +  , c~>O, (18) 

r R ) = O - - x ) ~ + ( - - c .  c,p, c~, R), c , < o ,  

where ~ is the fraction of molecules undergoing diffuse reflection at the wall, and instead 
of u@(R) we introduce the arbitrary constant a, defined from the condition that the tangen- 
tial component of the momentum flux of gas at the wall be conserved. 
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Fig. i. Poiseuille flow as a function of inverse Knudsen number for a planar chan- 
nel: I) BGK [i]; 2) S model [6]; 3) [9]; 4) [i0]. 

Fig. 2. Thermal creep flow as a function of inverse Knudsen number for a planar 
channel: i) modified BGK [3]; 2) S model [6]; 3) [9]; 4) [i0]; 5) BGK [2]. 

Fig. 3. Poiseuille flow as a function of inverse Knudsen number for a circular 
cylindrical channel: i) BGK [i], S model [5]; 2) the Knudsen formula; 3) the pres- 
ent work. 

Fig. 4. Thermal creep flow as a function of inverse Knudsen number for a circular 
cylindrical channel: i) modified BGK [3]; 2) S model [5]; 3) the present work. 

Using condition (14) and the definition of Prz by Eq, (9) at the channel wall, and after 
computing the appropriate integrals and using Eq~ (18), we obtain 

a=[3_I/2 (2--• V~ k R _  kR + , (19) 
• 4 48 86 J 

where ~ = R/l is the Knudsen number. 

Using Eq. (19) to calculate the quantities at the channel wall appearing in Eqs. (15)- 
(17) and of interest to us, we find the values, averaged over the channel section, of the gas 
velocity and the heat flux 

<Uz>~_~_l/2kR[_~__i (2--~) ( 1 2  -~-~ + - -  2 - - •  • V~-)_[ • 4 - -  46 (20) 
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. . . . .  1 o j ~: 
We now introduce the dlmens~onless quantltxes J* =Jm/mJo = 26 /- < u z > , r ---- Jq/k~ToJo= 

1/2 - i  
26 No (qz > , where Jm and Jq are the correspondxng averaged fluxes of mass and heat, re- 

/2 Then duced to unit area of channel section, and J0----no/2~ �9 , in accordance with the princi- 
ples of the thermodynamics of irreversible processes [14], J* =--LmmkB--Lmq'cR, J* = 
--Lq~IeR--Lvq~R General expressions for the coefficients Lik follow from Eq. (20). We note 
that the cross coefficients Likysatisf-y the Onsager reciprocity relation (Lmq = Lqm). In 
particular, for the case of complete diffuse reflection of molecules (• I) , these eoeffi- 
cients take the form 

L~,~ 6 ~ , 1 5 ar  3 
= - - .  , ( r T  - - - - - -  L,,,~ l = L q , ~ -  ~ - ~  

4 26 3 V~-6 ~ ' 6 ~f~-62 ' (21)  

15 27  
Lqq - -  

46 4 }'~762 ' 

where o = 1.0073 and a T = 1.125 are the coefficients of viscous and thermal slip, whose val- 
ues coincide with the results obtained in [8] using the variational method. 

For comparison we present the corresponding expressions for Lik in the case of a planar 
channel [i0] (6 = d/Z, where d is the channel width): 

& 5 3 aT 7 
Lm,n--  6 q - o q -  66 1,rF6 z , L,~ t = L q , ~ -  6 2 1/~-32 ' (22) 

15 27 
L q q  = - -  

46 --4 F,~6  z '  

We n o t e  t h a t  Eqs .  (21)  and  (22)  a r e  v a l i d  f o r  an  a r b i t r a r y  m o l e c u l a r  i n t e r a c t i o n  l a w ,  A n a l o -  
gous  r e s u l t s  c a n  be  o b t a i n e d  a l s o  f o r  t h e  BGK c o l l i s i o n  i n t e g r a l  m o d e l .  A c o m p a r i s o n  o f  
these with results of an exact numerical solution for this model shows that the present meth- 
od gives satisfactory agreement with the exact method in the region Kn ~.~ 0.25. 

Figures 1-4 show the quantities Lmm (describing isothermal Poiseuille flow of gas in a 
channel) and QT = --Lmq (describing thermal creep flow) for a planar and a cylindrical chan- 
nel, as a function of the inverse Knudsen number 6. Here also we show for comparison the re- 
sults of calculations using different collision integral models. As can be seen from the 
curves presented, the results of computing the coefficient Lmm with the BGK model and the S 
model for Kn ~ 0.25 agree satisfactorily with our results that do not use the model represen- 
tations. We note that the curves corresponding to the Knudsen interpolation formula describ- 
ing the experimental data for Poiseuille flow in a cylindrical channel fall above the com- 
puted curves by an average of 5%, which is evidently connected with the difference in the mo- 
mentum accommodation coefficient at the wall from unity in these experiments. 

In regard to the thermal creep flow, the results of our calculations of QT in the re- 
gion Kn ~ 0.2 agree well with the calculations for the modified BGK model (using two rare- 
faction parameters defined for the gas viscosity and thermal conductivity). Here the values 
for the S model are somewhat higher, and the results of [9] for a planar channel are notice- 
ably lowered due to incorrect choice of the Barnett term in the distribution function. 

NOTATION 

Kn, Knudsen number; Pr, Prandtl number; k, T, relative gradients of pressure and tem- 
perature; r, ~, z, variables in a cylindrical coordinate system; u z, hydrodynamic velocity; 
Prz, viscous stress tensor; qz, heat flux; Sijk, ~ijkZ, moments of third and fourth order; 
2, mean free path; R, channel radius; d, channel width; 6, inverse Knudsen number; J~, Jq, 
averaged dimensionless fluxes of mass and heat, referenced to unit area of channel cross sec- 
tion; • , fraction of molecules undergoing diffuse reflection at the wall. 
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A METHOD OF SIMULTANEOUS MEASUREMENT OF THE SORET 

AND DIFFUSION COEFFICIENTS OF LIQUID SOLUTIONS 

V. M. Buzmakov, A. Yu. Pinyagin~ ~nd A. F. Pshenichnikov UDC 532.08;533.1/5.08 

A method is developed for the simultaneous measurement of the Soret and diffu- 
sion coefficients under the conditions of a quasiisothermal process of damping 
of concentration disturbances in the measurement cell. Measurement results are 
presented for aqueous solutions of potassium chloride and sodium sulfate. 

The principal methods of measuring the Soret coefficient, which characterizes the amount 
of thermodiffusional separation, presume the use of thermodiffusion columns or so-called con- 
vectionless cells. Optical methods are usually used to measure the concentration gradient in 
the cells. The latter do not introduce disturbances, permit one to reduce the size of the 
cell, and shorten the time of one test to several hours [!]. 

Finding the Soret coefficient from the conditions of a steady-state process is hindered 
by the fact that the optical signal is determined by the temperature and concentration fields 
simultaneously. In this case the contribution of the temperature field considerably exceeds 
the contribution of the concentration field. Therefore, measurement of the concentration dif- 
ference is performed with considerable errors. The absence of precise information about the 
temperature dependence of the index of refraction of the mixture results in additional errors. 
Nonsteady methods, based on an analysis of the process of establishment of the concentration 
field under the action of an applied temperature difference, have the same drawbacks. 

The accuracy in,measuring the concentration gradients can be increased if the experi- 
ments are conducted under isothermal conditions. In this case the initial concentration dif- 
ference is also created through thermodiffusion, but after the stationary regime is estab- 
lished the temperature at the boundaries of the measurement cell is made the same. Thanks 
to this, the time of relaxation of temperature disturbances is two orders of magnitude less 
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